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ABSTRACT

A method is presented for determining the three-
dimensional virtual mass distribution associated with the
vertical girder vibration of ships. The method was de-
veloped for use with a lumped mass/weightless beam ship
representation and is based on a set of dipole distri-
butions along the ship axis. It provides a virtual mass
matrix with off-diagonal elements and enables all the vi-
bration frequencies and shapes of the ship to be computed
from a single matrix equation. The usual method for
determining the frequencies and shapes uses a separate
mass matrix for each mode. The method is preferable to
the standard one for short or unusual ships and mode
shapes, or where it is desirable to include all modes in
a single equation. However, if separate consideration
of each mode is acceptable, the standard technique is
simpler for normal ships.
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Naval Construction Research Establishment at Dunfermline, Fife, Scotland.

During 1969, he was assigned duties as exchange scientist in the Ship Pro-

tection Division of the Department of Structural Mechanics, Naval Ship

Research and Development Center; his salary and expenses during this

assignment were paid by the United Kingdom. The work reported herein was

performed under Naval Ordnance Systems Command Task UF17-354-304, with

funding support only for computer time and printing of the report.

INTRODUCTI ON

In problems concerned with the vibration of ships, it has long been

appreciated that the effect of the surrounding water must be ailowed for

if reasonably accurate predictions are to be made of the frequencies of

vibration and of the mode shapes. At almost all frequencies of interest,

the principal effect of the water is a very large increase in the effective

inertial mass of the ship; at heaving but at pitching frequencies, there is

also a considerable damping effect due to the generation of surface waves.

For many ships, the additional mass (virtual mass) due to the water is

between 1 1/2 and twice the total displacement of the ship and its effect
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is consequently very significant. Todd 1gives an historical survey of

the study of virtual masF and its application to ship vibration. Kaplan 2

gives a comprehensive critical review of the literature of the subject.

Most current methods of allowing for the virtual mass are adap-

tations of a technique introduced very early by Lewis. 3 He noted ihat

because of the long slender nature of ships, the fluid flow around the

ship would be largely confined between transverse planes because of its

transverse motion and so could be approximated at each ship cross section

by the two-dimensional flow aiound an infinite cylinder of the same shape

as the cross section. Such two-dimensional flows are fairly easy to

determine. The method has since been called strip theory. To allow for

the existence of some flow parallel to the ship axis, Lewis computed the

exact kinetic energy for vibrating ellipsoids of revolution and also the

kinetic energies for the same ellipsoids of revolution under the as-

sumptions of strip theory. For any particular ship, the virtual mass

distribution along the ship deduced from the two-dimensional flow so-

lutions could then be reduced in the ratio of the two kinetic energies

calculated for an ellipsoid of the same length/beam ratio. This is Ftill

the standard method of computing the virtual mass distribution and the

tao-dimensional flows have been calculated for a much greater variety of

cross-sectional shapes than were given by Lewis. However, Taylox4 showed

that Lewis had not used the best possible boundary condition for his

exact ellipsoid solution. Taylor presented a different set of reduction

factors to allow for the three-dimensional flow effect. He also gave a

third set of reduction factors deduced from the transverse vibration of an

infinite circular cylinder with a sinusoidal distribution in the vibration

amplitude along its length. Most vibration calculations have used his

ellipsoid correction factor but at least one method5 uses the cylinder

factor.

The above technique works very successfully for the oasic two or

three vibration modes, but it has several disadvantages. First, in

addition to the variety of three-dimensional flow correction factors

References are listed on page 30.t 2



available, each type of reduction factor depends on the particular type

of motion; a different factor is required for each vibration mode. Lewis

gave correction factors for heaving, pitching, and two- and three-node

vertical vibration. Taylor gave a correction factor only for two-node

vibration. Since most methods of computing the vibration frequencies in-

volve eigenvalues of either a differential equation or a matrix, this

means that a different equation or matrix must be solved for each mode;

this requirement considerably complicates programming a computer to carry

out the task. Moreover, for some shapes (as discussed at some length in

Reference 2), there is the possibility that the correction factor may vary

along the length of the ship, the reduction possibly being greater near

the ends than at the center. There is no present means of allowing for

such a variation. Finally, in one particular type of problem, namely the

hull whipping induced by underwater explosions, in order to be able to

deal with nonlinear effects conveniently it is necessary to represent the

equations of motion of the ship as a single matrix equation including the

effects of all modes simultaneously. The present type of correction

factor, varying from mode to mode, excludes such a representation. Even

in the completely linear case, the vibrations of a damaged ship involve

mode shapes for which no correction factors are available. These dis-

advantages prompted the presen'. attempt to find an alternative method of

allowing for the virtual mass effect.

NATURE OF THE MODIFICATION REQUIRED

The present "strip theory" described above relates the force on

each transverse section of the ship to the motion of that section alone,

the overall (three-dimensional) correction factor being constant along

the length. If the ship is divided into n sections, with n large enough

that the variation in cross-sectional shape is small in each section,
th

then the vertical hydrodynamic force F .i on the i section is related to

the average vertical displacement yi of the section by

F = - m . v.Wi Wi "i

where dots denote differentiation with respect to time and m . is the

virtual mass of the section. The equation for the forces on all sections
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of the ship may then be written in the matrix form

F w M~ y [1

where F an'd y are column vecters and Mw is a diagonal matrix. This

standard strip theory equation clearly cannot be valid for general motions.

If one section of the ship is accelerating upward, it will certainly ex-

perience a downward hydrodynamic force and so diagonal elements in M are

necessary. However it will also induce a downward fluid acceleration

around it as fluid noves to fill the space it is vacating. This flow will

be around neighboring sections and so will induce a downward force on these

too. This means that for Equation [1] to be true, M should contain off-w

diagonal elements. In fact, all elements of N1w will be nonzero, but since

each section will principally affect its nearest neighbors, the magnitude

of the elements will decay rapidly away from the main diagonal. The

problem is to determine the elements of Mw . Since the general ship prob-

lem is very difficult, attention is directed first to the case of an

axisyminetric ship.

MATHEMATICAL MODEL FOR AN AXISYNDIETRIC SHIP

For such a ship, it is possible to satisfy fairly well the fluid

boundary condition of equality of hull and fluid velocities along the

normals to the hull by means of a distribution of vertical dipoles dis-

tributed along the axis of the ship. This distribution should normally

be continuous, but if the ship is considered to be divided into a number

of sections and the number is large enough, then it should be reasonable

to assume that the line distribution in each section i has a constant

strength pi.

Since the velocity potential at the point (r,e,z) due to a dipole

at the point (o,o,s) (referred to the cylindrical polar coordinates of

Figure 1) is given by

4- u r cos9 where u-V46 = ~3/2 'weeu=-q

[r +(z-s) 1
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the potential due to a line distribution of dipoles of strength vi per

unit length and extending from zi1/2 to zi+1/2 is

i+1/2

Yi ,,z ) = i r cos 6 ds

z i-1/2 Ir +(z-s) I

whence

Ui Cos O Z-zi-1/2 Z-i+1i/2
-(1 21/2 [2]

[r+(~i-1/2) 21/ [r+(zi+1/2) 2

The radial velocity ur produced by the distribution is given by

3i. ui cos z.-zi1/2 z-zi+1/2
u . r(z)=- 1 r 2 - 1/2 2 1/2

r- rt 2+(zzi 1/2 [r 2+(z-zi~i/ 2) 2/

2 r 2 (z- /2) } [3]

2 (z-zi-/2) 2 /2

[r 2+(z-zi/2) 2 [r2 +(z-zi+1/2) 2]

and the longitudinal velocity uz by

Uzi(Z) U z- r cos e ] /  -, ° 3 [4]
(z 3 = ji r cos { [r2+ (z- zi+ /2) 2 [r + (z-zi /2) 2 3

The total velocities produced by all the distributions are therefore

n n

Ur(Z) =E Urj(z) and u (z) =j uzj(z)

j=l j=l

The boundary coihdition at the hull is that the velocities of the
fluid and the hull, resolved in the direction of the normal to the hull,

S



should be equal, F-r the axisymumetric shape considered, the angle X be-

tween the normal to the hull and the radial direction is given by

= - tan- b where b(z) is the radius of the ship and V = db/dz. The

boundary condizion is, therefore,

v cos - v' b sin = ur cos A + u sin X [Ej
rL

where v(z) is the distribution of vertical velocity along the length. This

condition allows for both shearing and flexing of the ship. For the more

interesting, lower frequency modes of vibration, v'b will be small com-

pared to v since the wavelength will be much greater than the half beam.

A will also normally be small except possibly in the immediate neighbor-

hood of the stern. The term vb sin A will therefore be very small. The

flow along the ship, (u ) is produced partly by the variation in v along
the ship (i.e., by V') and partly by the changing shape of the ship (V').

It too will, therefore, normally be small when v and V are small. It is

generally possible then to simplify the boundary condition (Equation [5])

to

v = ur  [6]

except- when rapid changes occur in either the ship underwater cross-

sectional area or in the velocity distribution along its length (e.g., for

high modes). This simplification in the boundary condition slightly

reduces the amount of data needed to specify the ship and its motion. It

is roughly equivalent to neglecting rotary inertia in the dynamic equations

of the ship itself.

Neither of the boundary conditions, Equations [5] and [6], can be

satisfied everywhere by the assumed velocity potential. However, either

can be satisfied at up to n "collocation' points along the ship and the

boundary condition will not be seriously violated anywhere if these points

are suitably chosen. The most convenient choice for the collocation

points is at the midpoints z. of the ship sections, and satisfying1

Equation [6] at these points gives
= 1

y I = A ii [7]
b2

Here b is the maximum value of b(z), y (z) is the vertical velocity of the
ship, and the matrix A = (a.i) where

1J
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Sb2 (z - z+ /2) (z- zj-Il/2)
ij b i2{[b 2 +( 3 -+ /2) 1/2 [b +(Z __ it 21

13j b. 2]2I1 1/
[2+(zi-z-i...l2) ][b.2+ (zi-z. -z/2)2] /

is
b i2( zi - z 4 £/2) b. 2 (zi\ - 2

23/2 3/

[b2 +(z.-z.+Z./2) 2 [b.2 +(Z.-z z .12) 2

Equation [7] may then be inverted to determine the strengths p of the line

distributions necessary to satisfy the boundary condition, Equation [6],

for the given velocity distribution y. This gives

b2 A-1

The upward vertical force per unit length on the section at the

point z. is given by

1 2f 0 p cos 0 bi do

where p = p$ is the fluid pressure. Thus

iT n

f. =- 2 bi 4 cos 0 do =- 2p b 8ij f cos2  do
0 ~j=l0

n
apb

': z j=l

where

-i i ziz / 1/2 2 /29
[bi +(ziz /2)2] [b.i +(zi-z jz/2) 2 1/2 [9]

Since in any actual motion, conditions along the slip will be continuous,

the upward force/unit length at the center of the section will approximate

the average force/unit length over the whole section and the total upward

force F. on the section will be approximately
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n
F.= L. f. = - P..z_ ;.-&

j=1
that is

F-uobB -"b p BA- y [101

where B is the matrix (0i). The required inertial water mass matrix M

is therefore given by

3 -1M= wb3P B A [11]

This matrix depends only on the shape of the ship and is completely inde-

pendent of the type of motion (or vibration mode). With N1 known, theW .

force distribution for any vertical acceleration distribution y is readily

found. A short computer routine has been written to compute the non-
-1dimensional matrix BA and the force distributions deduced from it, by

Equation [10], for given distributions of vertical acceleration.

COMPARISON OF RESULTS IITH KNOIN EXACT FORCE DISTRIBUTIONS

Exact solutions are known for two forms of fluid flow that are

suitable for comparison, namely, the flows around a vibrating prolate

spheroid and around an infinite circular cylinder whose transverse

velocity varies sinusoidally along its length. The exact results for

both cases have been compared with the results from the foregoing analysis.

VIBRATING PROLATE SPHEROID

The methods involved in the solution of the flow about a prolate

spheroid are discussed in some detail by Lamb, (see page 139 of Reference
.3

6). Lewis gave the first solution in connection with transverse shear
4vibrations and Taylor gave a second solution using a different, more

realistic boundary condition involving both flexure and shear. This type

of motion has also since been investigated by Landweber and Macagno.
7

In principle, the vibrating ellipsoid can be solved exactly for

any arbitrary transverse velocity distribution but in practice only dis-

tributions represented by low order polynomials are required. Using the

analysis outlined in the Appendix, a short computer routine was written
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to evaluate the force distribution on an ellipsoid with a velocity distri-

bution representable by

S

v(z) vZ Vn(z/a) n-I

n=1

where z is the distance along the axis of symmetry from the center of the

ellipsoid of length 2a (see Figure 2). This velocity distribution is

sufficient to approximate heaving, pitching, and the first three whipping

modes of ship vibration. The boundary condition used in the solution is

that of Taylor and allows for flexure as well as shear.

Figures 3 and 4 compare the transverse force distributions given

by the approximate analysis with the values given by the exact solution

and also with the values given by the strip method, using the Lewis

correction factors since these are avaiiable for four of the five modes.

The values used for the coefficiepts (v1,...,V5 ) for these cases are

given in Table I.

TABLE I

Coefficients for the Ellipsoid libration Shapes

Coefficient ~ 3 v7~MIode V VI V 2 VS3 V4 V 5

Heave 1 0 0 0 0

Pitch 0 1 0 0 0

2-node Vertical -0.200 0 1 0 0

S3-node Vertical 0 -0.429 0 1 0

4-node Vertical 0.0274 0 -0.534 0 1

The first four mode shapes are those used by Lewis, although the exact

analysis used the better Taylor boundary condition. The Lewis correction

factor and the approximate three-dimensional analysis both use the shear

type boundary condition, and the three-dimensional analysis also assumes

that the rate of change of the radius along the length is small. The

fifth mode shape has been chosen to have nodes at 0.155L, 0.38L, 0.62L,
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and 0.845L, where L is the total length. These are about the correct

positions for destroyers, but the resulting shape gives rather too much

prcninence to the ends and too little to the central section.

For the L/B=10 ellipsoid, the results for both the three-dimensional

and the two-dimensional (strip theory) approximations agree well with the

exact analysis and there is little to choose between them. The three-

dimensional approximation is slightly better near the center of the

ellipsoid where changes in the radius are smallest, but the two-dimensional

approximation is better at the ends where the radius is changing rapidly.

The results for the L/B=5 ellipsoid are very similar but the di-

vergence from the exact solution is quite serious near the ends for both

approximations for modes as low as the second vibration mode. Once again,

there is very little to choose between the two approximate methods.

For most ships in which vibration frequencies are particularly im-

portant, the L/B ratio is near 10 and both the strip theory and the new

three-dimensional approximation should give good results. The divergence

near the ends for the lower L/B ratio is caused by using the approximate

form of the boundary condition, Equation [6]. From this point of view,

the ellipsoid is rather a poor shape since the radius changes extremely

rapidly near the ends. The radius changes are much less severe for

typical ship forms, and either approximate method would give better

results. Use of the exact boundary condition, Equation [5], would be

simple in the case of the ellipsoid because the velocity distribution and

rate of change of radius are easily defined, but is scarcely worth the

effort for ship forms (unless rotary inertias are being considered). This

point is considered later.

INFINITE CIRCULAR CYLINDER

Taylor4 was the first to consider this case. The infinitely long

circular cylinder was assumed to have a transverse velocity distribution

v(z) = V cos kz

Taylor gave the velocity potential for this distribution as

10



vo K.(kr)
€ -rcos 0 cos kz

k Ki(kb)

where b is the cylinder radius and K1 is a modified Bessel function of

the second kind. The fzrce distribution may be found as before and is

,v 0 K1 (kb)
f(z) =-2 f cos 0 b dO =- 20b f cos 0 dO =- iob 2 ko cos kz

kb K;(kb)
001

(force/unit length)

The wavelength X of the velocity distribution is A = 2r/k.

Since the approximate analysis is based on a body of finite length,

it cannot give a uniformly good representation of the infinite cylinder.

However, if it is used to represent three complete wavelengths of the

cylinder, the flow in the central wavelength should be approximately

correct. With three wavelengths, the program restricts the number of

sections in each wavelength to six. Table 2 compares the results from the

approximate analysis with the exact results. In this case, the cylinder

is of uniform diameter so that the boundary conditions, Equations [5] and

[6], in the three-dimensional approximation are equivalent. Inaccuracies

in the solution are due either to the coarseness of the representation or

to the finite length of the cylinder in che three-dimen: jonal approxi-

mation.

TABLE 2

Values of f(z)/rpb 2v for an Infinite Cylinder
o

'/ -6 7-;6 3?-12 11 -/6 13 -/6 5-/2 17 -/6

5 exact -9.448 0 0.448 0.448 0 -0.448 -0.448 0 0.448

3-D -0.445 -0.0002 0.445 0.445 -0.0014 -0.449 -0.452 -0.0140 0.383

10 exact -0.631 0 0.631 0.631 0 -0.631 -0.631 0 0.691

3-D -0.609 -0.0003 0.609 0.609 -0.0013 -0.611 -0.616 -0.0189 0.511

15 exact -0.762 0 0.762 0.762 0 -0.762 -0.762 0 0.762

3-D -0.741 -0.0001 0.741 0.741 -0.0004 -0.744 -0.745 -0.0096 0.676

20 exact -0.826 0 0.826 0.826 0 -0.826 -0.826 0 0.826

3-D -0.839 -0.0007 0.839 0.839 0.0007 -0.839 -0.840 -0.0015 0.823
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For all values of X/b, the forces are clearly very accurate near the

center, being within 4 percent of the exact value in all cases. The

points given were the only ones used, indicating the coarseness of the

representation; it is equivalent in a ship representation to using 20

points to represent the fifth vibration mode (six nodes). Since the

values from the three-dimensional approximation are constant to at least

z/1 = 7v/6, the differeitces from the exact result are attributable to the

coarse mesh rather than to the finite length. For the X/b - S case, the

lengths of each section are nearly equal to their radii whereas for the

X/b = 20 case, the sections are nearly nine radii long.

APPLICATION OF THE TECHNIQUE TO NONAXISYMETRIC SHIPS

Clearly it would be possible in principle to extend the three-

dimensional approximation by adding distributions of higher multipoles

along the ship axis and determining their strength by satisfying a

boundary condition around the circumference of the ship as well as along

its axis. This would, however, require very large amounts of data to

represent the ship shape as well as the inversion of a very large matrix.

The success of the strip method using Lewis sections for the cross-

sectional shapes points to simpler approaches.

In the solution of the two-dimensional flows about ship-type cross

sections, although the velocity potential may in fact consist of a super-

position of two-dimensional multipoles of all orders, the added mass of

each section depends only on the dipole term, the shape of the section

determining its strength. In the three-dimensional case, it should,

therefore, be approximately correct to account for the shape of the

section via the strengths of the dipole distributions.

Since the original work by Lewis, it has been customary to represent

the added mass per unit length of the two-dimensional cross sections in

the form

b 2 C

where b is the half beam of the section and C is a constant depending on

the section shape. Values for C have been computed for a great variety of

12



shapes.3 '4 ,8-12 The above value for the added mass is also that due to a

circular cylinder of radius

bequiv =b [121

For a nonaxisymmetric ship then, each cross section may be compared with

the known shapes and C determined. Then Equation [12] gives the appro-

priate radius for an axisymmetric approximation to the actual shape. There

are no reasonably simple nonaxisymmetric three-dimensional flows with

exact solutions which can be used for comparison, but the procedure should

give reasonable results. Certainly in the 2-node vibration mode, in the

central section of the ship where the added mass is most important, the

technique will give very good answers since the flow in this region is

very nearly two-dimensional and the method is exact in the two-dimensional

case.

APPLICATION TO SHIP VIBRATION

Most current techniques for the determination of ship natural

frequencies by purely theoretical means depend on finite-element lumped

mass approaches. These represent the ship as a series of lumped masses

interconnected by weightless elastic beams. All applied forces, including

distributed inertial forces and moments, are approximated by equivalent

point forces and moments applied to the lumped masses. It is then

possible to compute a stiffness matrix K such that when no moments are

applied, the forces F required at the masses to statically maintain a

given displacement shape y are given by

F = K y

Neglecting buoyancy forces and rotary inertia (these can easily be included

if desired), the only forces on a ship in still water are inertial forces

FI and hydrodynamic forces F w If the values of the lumped masses are
M, P .. •m ,n

F I - y

13



where M is the diagonal matrix with elements (mi). The hydrodynamic
forces are given by Equations [10], i.e.,

F = M w y

with M as given in Equation [11].

The equation of ship motion is then

K y = F - - y  [13]

i.e. (M + M.) y + K y = o

The natural vibration frequencies are the eigenvalues of this matrix

equation and the mode shapes are the corresponding vectors. In the strip

method for the hydredynamic flow, M and M4 are both diagonal matrices.w

Since K is symmetric, the equation can then be transformed into

z+S z=0

where S = (M + M4)-/2 K (M + M4 -i/2 and z = (14 + Y_)/2 Y.
w W- w

S is symmetric and its eigenvalues are easily found by any of the standard

routines for eigenvalues and vectors of symmetric matrixes. For the strip

method, however, M 
w depends on the mode shape being investigated and a

different matrix S must be used for each mode.

In the proposed three-dimensional analysis, the matrix N1 is found

as a full matrix with a dominant diagonal but no zero elements. Equation

[13] may then be written

+ s, 0  S l= (M+ M) - K

and the eigenvalues found directly. S1 will not, however, be symmetric,

and this restricts the available range of computer routines. The full M|

matrix is actually not symmetric but the degree of asymmetry is not

large except for extreme shapes. It may be artifically made symmetric by

replacing all elements mwij by 1/2 (mij + m .. ). This procedure was
W13 W13 wjiL

carried out for the examples used to check the three-dimensional theory and

in no case did it change the resulting forces by more than 3 percent. Since

the vibration frequencies depend, approximately, on the square root of the
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mass, this difference is negligible. A standard Cheleski decomposition
14

routine may then be used to generate a matrix L such that

LL = +M)

Equation [13] then transforms into

z + S2 z = 0

1 -Twhere S2 = L
- K L-. S? is now symmetric and its eigenvalues and vectors

may again be found by standard symmetric routines,

COMPARISON WITH FULL-SCALE SHIP VIBRATION RESULTS

Frequencies and mode shapes for overall hull vibrations were measured

recently on a World War II 2500-ton destroyer, HMS ROEBUCK. Table 3 com-

pares measured frequencies with those calculated using both standard strip

theory and the three-dimensional flow approximation. The strip theory

results were obtained by using Lewis three-dimensional correction factors

since these arb available for heave, pitch, and the first two vibration

modes and could be estimated for the third and fourth modes by extrapo-

lation. Also included in the table are the results calculated for the

three-dimensional flow approximation using the full boundary condition,

Equation [5], as described later.

TABLE 3

Measured and Computed Frequencies for a Destroyer

(Frequencies are given in hertz)

Computed
Measured Strip Method 3-D Flow Using 3-D Flow Using

Equation [6] Equation [5)

Heave 0.20 0.20 0.20

Pitch -- 0.22 0.23 0.23

First Vib 1.68 3.o4 1.64 1.66

Second Vib 3.35 3.16 3.20 3.22

Third Vib 4.97 4.92 4.96 5.00

Fourth Vib 6.63 6.90 6.96 7.03
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The results of all three methods are clearly fairly reasonable and

there is very little to choose between them. The three-dimensional flow

theory using the approximate boundary condition, Equation [6], gives

results very similar to the strip method using Lewis correction factors.

Since the approximate boundary condition, Equation [6], is equivalent to

the Lewis original one, the agreement really is a justification of the use

of strip theory. The results for the three-dimensional flow with the more

exact boundary condition, Equation [5], were slightly better and reduced

the error in the first mode frequency from 2 1/2 to 1 1/4 percent. The

strip thecry gave the same, improved, result for the first mode frequency

when the Taylor rather than the Lewis correction factor was used. How-

ever, Taylor does not give values for the reduction factor for the other

modes. For the strip theory results, a separate three-dimensional factor

had to be applied for each Lr-de.

The differences between the computed and measured frequencies, how-

ever, were slightly larger than the differences between the computed

values them-elves, indicating that the remaining errors were probably due

to factors other than the hydrodynmnics. There is still some douDt over

the ship mass distribution, the material to be included in calculating

the stiffness distribution along the ship, and, probably most important,

the best method for calculating the shear area distribution along the ship.

The calculated mode shapes were practically identical for the three

methods; they are compared with the experimental shapes for the first

three vibration modes in Figure 5. The difference between the measured

and calculated shapes for the first two modes was less than the scatter in

the experimental values, but there was a definite difference between the

shapes near the bow for the third mode.

The computer program which produced the results for both the three-

dimensional flow approximations is a modification of part of the FORTRAN

IV program described in Reference 13 and is run on an IBM 7090 computer.
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USE OF THE FULL BOUNDARY EQUATION

Where fairly sharp changes occur in the cross-sectional shape, the

three-dimensional flow approximation can be improved by using the full

boundary condition (Equation [5]) in place of the approximate condition

(Equation [6]). Using the finite element/lumped mass approach, with n

masses, the elastic nature of the ship may be represented by the equation

QjL ._C Y
where 7 and Q are n-component vectors that respectively represent the

forces and moments which must be applied to the lumped masses to maintain

statically the displacements y and bending rotations Y (Y excludes shear

deformations). A, B, and C will be (n x n) matrixes whose elements are

given in Reference 13. In vibration applicatioio, the forces and moments

are just the inertial and hydrodynamic forces and moments acting on the

regions around the lumped masses. F and Q will, therefore, be given by

where M and R are diagonal matrixes whose elements are the ship masses and

rotary inertias at the lumped-mass positions. The matrixes M 1 , My 2 , M,

and N1W4 will be hydrodynamic mass and inertia matrixes.

The above elastic matrices are of order (2n x 2n), and there are

several alternatives for the hydrodynamic formulation. The number of

sections on which the dipole distributions are defined may be doubled or

the same number of listributions may be kept, but the distributions them-

selves must be given a !;near variation instead of being constant. With

each technique, cithe: the full or the approximate boundary conditions

could be used although the full condition is the more appropriate. To

determine the unknown strengths of the 2n dipole distributions, 2n col-

location points would be required. As an alternative, the same dipole

17



distribution can be assumed but be made to satisfy the full boundary con-

dition. It can be used to calculate both the forces and the moments at

the lumped masses. This latter technique is in accord with using rotary

inertia terms in the elastic representation of the ship instead of dou-

bling the number of elastic sections and lumped masses, and is adopted

here.
th

The vertical velocity at the i mass is yi and the angular

velocity is y. Therefore, substituting for the angle X, the full boundary1

condition [5] at the position z. is

n n

+ b~. Yu ~'j (zi V bu zZ) a~~&i [14]j~l b2 =l

where

a = a.. + b,' + -2/ b2 + (z-z.-

-2 /2)2] -  }
Equation [14] may be written in matrix form as

where B is the diagonal matrix with elements bib i . The strengths of the

dipole distributions are then

b2  1 +b 2  I-
;j b A yb A BY[5

Given the strengths of the dipole distributions, from Equation [15], the

velocity potential is given by

n

j=l
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where . is defined in Equation [2]. This leads to a vertical force

f(zjdz on a length dz of ship; f(z) is given by

f(z) =_______ 71 4- / +12 12 [6

j=1 { + zz j-l/2 b2 + (z_z +l/2)1 2 1

The hydrodynamic force and moment on the ith section are therefore

z.i+1/ 2  z~/

Fi  f(z) dz and Q. = (z-z.) f(z) dz

1i-/2 zi-1/2

whence

n n

j=l j=l

In these, c.. and dij are given by

/ \ -1/2 2 2-2 1 l /2+rl+

c. ./~. = (l~b 2 i (r r r2-i + bX -i l g '
1J.21 /2 lo

X2 a2  l/2+r 2+

(l+bf2) I / 2 log ( 2 2- )

z.-z.+E./2 zi-z.- ./2 bib /zi+X bi/Z _x V
1 x = 2.. =  " I1 =  2

2 1 l+b: 2  ' 1+b.
i

+ = [ai1 =+1/2) 2 + 12]1/2 r 1  a [i 1/22 + i 12] , with

similar expressions for a 2' 2' r2+ and r2 -,

d./Z 2 =1 ( 2) 1/2 [+l/2)r+ - (al-1/2)r (a+ /2)r 2+ (0- /2) 1
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2 (a+1/2+r a 82 a2 +1i12+r
1 log (1 -1+ ~ 2 lo 2

+a ( \a-1/2+r,_ 2 2) o (a2 -.12+r2 -)

x1 -2a 1  x2-2a 2

1221 - 2 2 2 2

a1 2+812 
a2 +822

2aI + x-2a I  (a + 1/2 +r 1  2a2 + X-2a, (a 2 + 1/2+r 2
log 1 2 - 1/2 + r!_]  - - log l 2 - 1/2 + r2+

SI+b 2)i1/2 +r ) + b i' 2 I1/ 2  a -

With these values and uniform length sections,

= - ]2  [17]

where E and 5 are the matrixes (cij) and (dij), which gives the hydro-

dynamic matrixes M w, Mw2 , M w3 , N!" The equation of ship vibration is

then

' 0yl +FB' [18]
W3 w4

Since the rotary inertia corrections are small, the matrixes N1, R, and

Mw4 will be small. If they are neglected, the equation for Y gives
w4

= _ C-1 BT

and the y equation becomes

[M+M'wl- M 2 C -  BT] ; + [A B C- 1 BT] y = 0 [19]
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This equation is similar to Equation 114] but allows fully for the effect

of changing cross sections and bending deformation in the boundary con-

dition.

The force distributions given by Equation [16] for the vibrating

ellipsoids described earlier have been added to Figures 3 and 4 where these

differ appreciably from the earlier results. The great improvement in t'.e

accuracy of the results for the higher modes is very marked, particularly

for the smaller length/beam ratio ellipsoid. The results with the full

boundary condition are everywhere almost identical to the exact values.

In computing these values, the slopes V of the ellipsoids were

estimated numerically from the given radii b at the collocation points in

order zo reduce the amount of data needed to specify the shape of each

ellipsoid to that normal for strip-flow calculations. Since this method

is clearly adequate for the rather extreme slopes involved in ellipsoids,

it shoul' also be satisfactory for ships where shape changes are less

severe. Thus in applications to ship vibration, even the more exact form,

Equation [19], of the three-dimensional flow approximation need involve

no more data than presently necessary for the usual strip method.

The results given by Equation [19] for ship vibration have also

been computed for the destroyer case given earlier. The frequencies com-

puted are given in the last column of Table 3 and show a slight improve-

ment in the predicted first mode frequency. Again, the values of b were

estimated numerically from the equivalent radii at the collocation points

so that no extra data were required in the calculation. As expected, the

improvement resulting from the use of the exact boundary' condition,

Equation [5], instead of the approximate form, Equation [6], was much less

marked for the ship than for the ellipsoid. The mode shapes for the

destroyer showed no significant change.

CONC LUS IONS

A method is proposed for approximating the effects of the full

three-dimensional flow around a ship undergoing transverse vibration. It

provides an alternative to the "strip theory" usually used in the calcu-

lation of vibration frequencies.

r
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Although the matrixes involved are slightly more complicated to

set up, all vibration frequencies and mode shapes can be found from the

eigenvalues and vectors of a single matrix equation. In the strip method

it is necessary to consider a different matrix equation for each mode

shape. The same data are required for either the three-dimensional

approximation or the strip method.

Where unusual mode shapes are involved (e.g., for damaged ships

with a very weak section) or for the more extreme shapes of ship (small

length to beam ratios), the propo.sed method will give better results than

with strip theory. Otherwise, if separate consideration of each mode is

acceptable, strip theory is easier to apply and gives very similar

results.

The close agreement between strip theory results and those from

tIe three-dimensional analysis indicates that the remaining discrepancies

between the experimental and computed vibration frequencies and shapes are

largely attributable to inadequacies in the specification of the elastic

stiffness characteristics of ships, such as cross-sectional inertia and

shear area, rather than to inadequate representation of the hydrodynamic

forces.
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Figure 1 - Geometry and Coordinate System
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Figure 2 - Coordinate System for
Vibrating Ellipsoid
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Figure 5 - Measured and Computed Mode Shapes
for a Destroyer
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APPENDIX

EXACT SOLUTION FOR TRANSVERSE VIBRATION OF AN ELLIPSOID
OF REVOLUrION

The coordinate system used to solve this problem is the ellipsoidal

set (4, u, 6) illustrated in Figure 2. The curves =const and u =const

represent confocal (and so orthogonal) systems of ellipsoids and hyper-

boloids of two sheets, respectively. In terms of the cylindrical polar

coordinates (r, 0, z),
2  1/2 2 1/2

r = k( -1) (I-U -1]

z=k p

If 0 represents the given ellipsoid, which is assumed to be of total
2 21/2

length 2a and maximum diameter 2b, then k = (a2 - b2 and

2 -1/2
o = (1 _ 62) where

a = b/a [A-2]

lf the vertical velocity distribution along the axis of the ellipsoid is

v(z/a), then the boundary condition on the surface of the ellipsoid will

be

Cos - b sin cos I [A-3]

;=C0

which allows for the rotation of cross sections due to bending. If v(z/a)

is a polynomial of degree N, then the solution for the velocity potential

can be written (see Reference 6) as

N+1
o 1Zan Q 1( )pl(' ) cos 6 [A-4]

n=l

where P 1 () and Q 1() are associated Legendre functions of the first and
Fe n n
second kinds, respectively.

Substituting this expression for € into Equation [A-3] gives

N+l d1
Kak bk dv dQ dnW~~~ V)-"--F = d - an-d-"I id

n=l=
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N+1
Z n-i

(since z=au on the ellipse). Since also v(z/a) =z v n p , the

equation becomes n= 1

n b a =ZIi- (n-i) 2J Vn n-I

d 1
Putting X = - a and integrating from 0 to u gives

n= n l

N+1 4 1 2

n [Pn(V) - Pn(o)]=Y (n1) n
n=1 n= 1

so that
N+I1

= (m + 1/2V 1 - n-)B . v I (m = 1, ... , N + 1)(m 12) n n mn
n=1

where
+1

Iron = Jn Pm(p)d = 0 , n < m or (n-m) odd
-1

= 2 n(n-1)... (n-m+2) (n-m) even
(n+m+l) (n+m-l)...(n-m+3) (

Thus, given the values v n, the X n and hence the an are easily found.

With the coefficients an known in Equation [A-4], the force distri-

bution f(z) on the ellipsoid is given by

f(z) = - 2 b(z) p cos 0 de where p = o

0

so that

N+I

f(z) = - iTob(z) Ia QI(C o ) Pl(z/a)

n=2
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A short computer routine has been written to compute values of" f(z)rob ~,

given b/a and vI..., v5. for a series of values of z. For the routine, N

is restricted to 4 since this is sufficient to represent the vibration

modes of principal interest.

29



REFERENCES

I. Todd, F.H., "Ship Hull Vibr-ition," Arnold, London (1961).

2. Kaplan, P., "A Study of the Virtual Mass Associated with the

Vertical Vibration of Ships in Water," Stevens Inst. Tech., Davidson Lab.

Report 734 (1959).

3. Lewis, F.M., "The Inertia of the IWater Surrounding a Vibrating

Ship," Trans. SNAME, Vol. 37 (1929).

4. Taylor, J.L., "Some Hydrodynamical Inertia Coefficients,"

Phil. Mag. S.7 Vol. 9, No. 55 (1930).

5. Leibowitz, R.C. and Kennard, E.H., "Theory of Freely Vibrating

Nonuniform Beams, Including Methods of Solution and Application to Ships,"

David Taylor Model Basin Report 1317 (1961).

6. Lamb, H., "Hydrodynamics," Sixth Edition, Cambridge Univ. Press

(1932).

7. Macagno, E.O. and Landweber, L., "Irrotational Motion of the

Liquid Surrounding a Vibrating Ellipsoid of Revolution," J. Ship Research,

Vol. 2, No. 1 (1958).

8. Prohaska, C.W., "Vibrations Verticales du Navire," Bulletin de L

Association Technique Maritime et Aeronautique (1957).

9. Wendel, K., "Hydrodynamic Masses and Hydrodynamic Moments of

Inertia," David Taylor Model Basin Translation 260 (1956).

10. Landweber, L. and Macagno, M., "Added Mass of Two-Dimensional

Forms Oscillating in a Free Surface," J. Ship Research, Vol. 1 (1957).

11. Landweber, L. and Macagno, M., "Added Masses of a Three-

Parameter Family of Two-Dimensional Forms Oscillating in a Free Surface,"

J. Ship Research, Vol. 2, No. 4 (1959).

12. Macagno, M., "A Comparison of Three Methods for Computing the

Added Mass of Ship Sections," J. Ship Research, Vol. 12, No. 4 (1968).

30



13. Hicks, A.N., "The Elastic Theory of Explosion Induced Whipping-

Computer Program Specification," Nay. Const. Res. Est. Report R 550 (1968).

14. Martin, R.S. and Wilkinson, J.FI., "Reduction of the Symmetric

Eigenproblem Ax=XBx and Related Problems to Standard Form," Numerische

Mathematik, 11, pp. 99-110 (1968).

31



Unclassified
Sectirn2 Clas'.tficataon

DOCUMENT CONTROL DATA- R & D
S--tst $tas,,ut.;l- on of t.tie. ho, o abtrart and indexng Irnoflta'-n nlot be entered ahen the overall report is CIAss Slled)

I ON#IGIN A (ING A CI IVtTY (Cororate Author) 20. REPORT SECURITY CLASSIFICATION

Naval Ship Research and Development Center Unclassified

Washington, D.C. 20007 b.

3 REPORT TITLE

A METHOD FOR DETERMINING THE VIRTUAL MASS PISTRIBUTION AROUND A VIBRATING SHIP

A DESCRIPTIVE NOTES ('ype of report and Inclusive dates)

Final
S AU THORIS) (Fiti name. middle itodial. lost name)

A.N. Hicks

6, REPORT DATE 7A. TOTAL NO OF PAGES Ib. No OF EcFS

January 1970 34 1 14
68. CONTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMBERIS)

b. PROJECT NO 3272

- Sb. OTN'R REP>OR1 14OtSt -Any other numbers that may be assigned! this report)

:- d.

IC DISTRIBUTION STATE'MENT

This document has been approved for public release and sale; its distribution
is unlimited.

II SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

Naval Ordnance Systems Command

13 ABSTRACT

A method is presented for determining the three-dimensional

virtual mass distribution associated with the vertical girder vi-

bration of ships. The method was developed for use gith a lumped

mass/weightless beam ship representation and is based on a set of dipole

distributions along the ship axis. It provides a virtual mass matrix

with off-diagonal elements and enables all the vibration frequencies

and shapes of the ship to be computed from a single matrix equation.

The usual method for determining the frequencies and shapes uses a

separate mass matrix for each mode. The method is preferable to

the standard one for short or unusual ships and mode shapes, or

where it is desirable to include all modes in a single equation. how-

ever, if separate consideration of each mode is acceptable, the

standard technique is simpler for normal ships.

,D D Nov 1 4 7 3  Unclassified
S/N 0101•807.6601 Security classihtcation



Unclassified
Security Ciass,'ua:ion

So LINK A LINK 5 I LINK CCCY WONOS 4 .

ROLE WT R611
' 

W ROLli WT

Hull Vibrations
Ship Whipping

Virtual Mass

Strip Flow

DD 1,oF I1473 (BACK) Unclassified
(PAGE' 2) Security Classification


